
Understanding C/C++ Strict Aliasing
or - Why won't the #$@##@^% compiler let me do what I need to do!

by Patrick Horgan

There's a lot of confusion about strict aliasing rules. The main source of people's confusion is
that there are two different audiences that talk about aliasing, developers who use compilers, and
compiler writers. In this document I'm going to try to clear it all up for you. The things that I'm going
to cover are based on the aliasing rules in C89/90 (6.3), C98/99 (6.5/7) as well as in C++98 (3.10/15),
and C++0x (3.10/10). To find the aliasing rules in a version of the C or C++ standards, search for “may
not be aliased”, which will find a footnote that refers back up to the section on allowable forms of
aliasing.

Developers get interested in aliasing when a compiler gives them a warning about type punning
and strict aliasing rules and they try to understand what the warnings mean. They Google for the
warning message, they find references to the section on aliasing in one of the C or C++ specs and think,
“Yes, that's what I'm trying to do, alias.” Then they study that section of the appropriate spec like
they're studying arcane runes and try to divine the rules that will let them do the things that they're
trying to do. They think that the aliasing rules are written to tell them how to do type punning. They
couldn't be more wrong.

The compiler writers know what the strict aliasing rules are for. They are written to let compiler
writers know when they can safely assume that a change made through one variable won't affect the
value of another variable, and conversely when they have to assume that two variables might actually
refer to the same spot in memory.

So this document is divided into two parts. First I'll talk about what strict aliasing is and why it
exists, and then I'll talk about how to do the kinds of things developers need to do in ways that won't
come in conflict with those rules.

What is aliasing exactly?
Aliasing is when more than one lvalue refers to the same memory location (when you hear

lvalue, think of things (variables) that can be on the left-hand side of assignments). As an example:

int anint;
int *intptr=&anint;

If you change the value of *intptr, the value referenced by anint also changes because
*intptr aliases anint, it's just another name for the same thing. Another example is:

int anint;
void foo(int &i1, int &i2);
foo(anint,anint);

Within the body of foo, since we used anint for both arguments, the two references, i1, and i2
alias, i.e. refer to the same location when called this way.

What's the problem?
Examine the following code:

int anint;
void foo(double *dblptr)
{
 anint=1;
 *dblptr=3.14159;
 bar(anint);
}

Looking at this, it looks safe to assume that the argument to bar() is a constant 1. In the bad old
days compiler writers had to make worst-case aliasing assumptions, and could not say that it was safe
to assume the argument to bar was 1. They had to insert code to reload the value of anint for the
call, because the intervening assignment through dblptr could have changed the value of anint if
dblptr pointed to it. It's possible that the call to foo was foo((double *)&anint).

That's the problem that strict aliasing is intended to fix. Aliasing, and the problems it leads to,
have been there as long as C has existed. The difference lately, is that compiler writers are being strict
about the rules and enforcing them when optimization is in effect. In their respective standards, C and
C++ include lists of the things that can legitimately alias, (see the next section), and in all other cases,
compiler writers are allowed to assume no interactions between lvalues. Anything not on the list can be
assumed to not alias, and compiler writers are free to do optimizations that make that assumption. For
anything on the list, aliasing could possibly occur and compiler writers have to assume that it does.
When compiler writers follow these lists, and assume that your code follows the rules, it's called strict-
aliasing. Under strict-aliasing, the compiler writer is free to optimize the function foo above because
incompatible types, double and int, can't alias. That means that if you do call foo as foo((double
*)&anint) something will go quickly wrong.

So what can alias?
From C9899:201x 6.5 Expressions:

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its members
(including, recursively, a member of a subaggregate or contained union), or

— a character type.

These can be summarized as follows:

• Things that are compatible types or differ only by the addition of any combination of signed,
unsigned, const or volatile. For most purposes compatible type just means the same type.
If you want more details you can read the specs. (Example: If you get a pointer to long, and a
pointer to const unsigned long they could point to the same thing.)

• An aggregate (struct or class) or union type can alias types contained inside them.
(Example: If a function gets passed a pointer to an int, and a pointer to a struct or union
containing an int, or possibly containing another struct or union containing an int, or
containing...ad infinitum, it's possible that the int* points to an int contained inside the
struct or union pointed at by the other pointer.)

• A character type. A char*, signed char*, or unsigned char* is specifically allowed by the
specs to point to anything. That means it can alias anything in memory.

• For C++ only, a possibly CV (const and/or volatile) qualified base class type of a dynamic
type can alias the child type. (Example: if class dog has class animal for a base class,
pointers or references to class dog and class animal can alias.)

Of course references have all these same issues and pointers and references can alias. Any
lvalue has to be assumed to possibly alias to another lvalue if these rules say that they can alias. It's
just as likely to come up with values passed by reference or passed as pointer to values.

So what if I need to do something the compiler doesn't like?
The following program swaps the halves of a 32 bit integer, and is typical of code you might use to
handle data passed between a little-endian and big-endian machine. It also generates 6 warnings about
breaking strict-aliasing rules. Many would dismiss them. The correct output of the program is:

00000020 00200000

but when optimization is turned on it's:

00000020 00000020

THAT's what the warning is trying to tell you, that the optimizer is going to do things that you don't
like.

uint32_t
swaphalves(uint32_t a)
{
 uint32_t acopy=a;
 uint16_t *ptr=(uint16_t*)&acopy;// can't use static_cast<>, not legal.
 // you should be warned by that.
 uint16_t tmp=ptr[0];
 ptr[0]=ptr[1];
 ptr[1]=tmp;
 return acopy;
}

int main()
{
 uint32_t a;
 a=32;
 cout << hex << setfill('0') << setw(8) << a << endl;
 a=swaphalves(a);
 cout << setw(8) << a << endl;
}

So what goes wrong? Since a uint16_t can't alias a uint32_t, under the rules, it's ignored in
considering what to do with acopy. Since it sees that nothing is done with acopy inside the
swaphalves function, it just returns the original value of a. Here's the (annotated) x86 assembler
generated by gcc 4.4.1 for swaphalves, let's see what went wrong:

_Z10swaphalvesj:
 pushl %ebp
 movl %esp, %ebp
 subl $16, %esp
 movl 8(%ebp), %eax # get a in %eax
 movl %eax, -8(%ebp) # and store it in acopy
 leal -8(%ebp), %eax # now get eax pointing at acopy (ptr=&acopy)
 movl %eax, -12(%ebp) # save that ptr at -12(%ebp)
 movl -12(%ebp), %eax # get the ptr back in %eax
 movzwl (%eax), %eax # get 16 bits from ptr[0] in eax
 movw %ax, -2(%ebp) # store the 16 bits into tmp
 movl -12(%ebp), %eax # get the ptr back in eax
 addl $2, %eax # bump up by two to get to ptr[1]
 movzwl (%eax), %edx # get that 16 bits into %edx
 movl -12(%ebp), %eax # get ptr into eax
 movw %dx, (%eax) # store the 16 bits into ptr[1]
 movl -12(%ebp), %eax # get the ptr again
 leal 2(%eax), %edx # get the address of ptr[1] into edx

 movzwl -2(%ebp), %eax # get tmp into eax
 movw %ax, (%edx) # store into ptr[1]
 movl -8(%ebp), %eax # forget all that, return original a.
 leave
 ret

Scary, isn't it? Of course, if you are using gcc, you could use -fno-strict-aliasing to get the right output,
but the generated code won't be as good. A better way to accomplish the same thing without the
warnings or the incorrect output is to define swaphalves like this (supported in C99 and later C specs,
but your mileage may vary in C++, many compilers would support it, but the spec doesn't allow it.
Right after this discussion I'll have another solution with memcpy that's slightly less efficient but
supported by both C and C++):

uint32_t
swaphalves(uint32_t a)
{
 union swapem{
 uint32_t as32bit;
 uint16_t as16bit[2];
 };
 swapem s={a};
 uint16_t tmp;
 tmp=s.as16bit[0];
 s.as16bit[0]=s.as16bit[1];
 s.as16bit[1]=tmp;
 return s.as32bit;
}

The C++ compiler knows that members of a union fill the same memory, and this helps the compiler
generate MUCH better code:

_Z10swaphalvesj:
 pushl %ebp # save the original value of ebp
 movl %esp, %ebp # point ebp at the stack frame
 movl 8(%ebp), %eax # get a in eax
 popl %ebp # get the original ebp value back
 roll $16, %eax # swap the two halves of a and return it
 ret

So do it wrong, via strange casts and get incorrect code, or by turning off strict-aliasing get
inefficient code, or do it right and get efficient code. You could also accomplish the same thing by
using memcpy with char* to move the data around for the swap. It will not generate code quite as
elegant nor as efficient as using the union, because it will add two calls to memcpy, but in different
circumstances might be a good choice, and will work with C and C++. Here's how it would look:

uint32_t
swaphalves(uint32_t a)
{
 uint16_t as16bit[2],tmp;

 memcpy(as16bit, &a, sizeof(a));
 tmp = as16bit[0];
 as16bit[0] = as16bit[1];
 as16bit[1] = tmp;
 memcpy(&a, as16bit, sizeof(a));

 return a;
}

For the above code, a C compiler will generate code similar to the previous solution, but with
two calls to memcpy. You can imagine other variants that substitute reading and writing through a char
pointer locally for the calls to memcpy.

Similar issues arrive from networking code where you don't know what type of packet you have
until you examine it. unions are your friend here as well.

The restrict keyword
In C, but not in C++ you can promise the compiler that a pointer to something is not aliased

with the restrict keyword. In a situation where the compiler would have to expect that things could
alias, you can tell the compiler that you promise it will not be so. So in this:

void foo(int * restrict i1, int * restrict i2);

you're telling the compiler that you promise that i1 and i2 will never point at the same memory. You
have to know well the implementation of foo and only pass into it things that will keep the promise
that things accessed through i1 and i2 will never alias. The compiler believes you and may be able to
do a better job of optimization. If you break the promise your mileage may vary (and by that I mean
that you may cry). This is not available for C++.

If you have comments, corrections, suggestions for improvement, or examples, feel free to email me.

Thanks,

Patrick Horgan

patrick at dbp-consulting dot com

	What is aliasing exactly?
	What's the problem?
	So what can alias?
	So what if I need to do something the compiler doesn't like?
	The restrict keyword

